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Abstract-The linear stability of the thermodiffusive equilibrium of a binary mixture of two miscible fluids 
in a horizontal plane porous layer is investigated. The linear theory is based on the normal mode analysis 
under the small amplitude assumption. The effect of anisotropic thermo-convective currents on the stability 
is obtained. The effect of Prandtl number. ratio of diffusivities and separation parameter are presented 
graphically. It is found that the thermo-convective currents have a stabilizing effect as well as a destabilizing 
effect with respect to the case in which these currents are absent. We also find that either a stationary 
instability or oscillatory instability can occur as the first bifurcation. Some of the results about the former 

problems are deduced. 

1. INTRODUCTION 

IF GRADIENTS of two stratifying agencies, such as heat 
and salt, having different diffusivities are simul- 
taneously present in a fluid layer, a variety of inter- 
esting convective phenomena can occur which are not 
possible in single component fluids. The case of two 
stratifying agencies has been the subject of extensive 
studies which have been reviewed by Turner [l-3]. 
During the last decade, there has been considerable 
interest in systems showing an oscillatory instability 
as the first bifurcation in various branches of fluid 
mechanics and condensed matter physics such as con- 
vective instabilities in mixtures of two fluids, in super- 
fluid mixtures and in various types of liquid crystals 
like uniaxial nematics and cholesteries and smectics. 
The quality of the single crystal produced from melts 
is limited by chemical and structural inhomogeneities. 
The defect generation depends on heat and mass 
transfer rates during solidification. These fluxes are 
mainly governed by convective phenomena of the 
liquid phase during processing. 

In the case of binary mixtures thermo-convective 
equilibrium is possible due to the presence of gradients 
of heat and also of concentration. The possibility of 
maintaining the stability, or generating instability, is 
more varied and pronounced as diffusive thermo-con- 
vective currents can be set up due to the critical differ- 
ences in temperature or concentration or both, 
imposed on the boundaries of the layer. Further, these 
critical differences can be affected by anisotropic 
effects within the mixture itself, due to interactions 
between the thermal and concentration gradients 
known as Soret and Dufour effects. McDougall [4], 
Brand and Steinberg [5] and Rudraiah and Mala- 
shetty [6] have studied the effect of these cross- 
diffusions on double-diffusive convection in viscous 

fluids and porous layers. But these authors have 
ignored the effect of anisotropy. In this present paper 
we investigate the effect of anisotropic thenno-con- 
vective currents on thermodiffusive equilibrium in a 
horizontal porous layer using linear stability analysis. 

2. MATHEMATICAL FORMULATION 

The basic equations describing the dynamics of a 
binary fluid mixture in a horizontal porous layer 
bounded between two free boundaries at i = 0 and d 
taking into account the effects of interaction between 
thermal convection and thermoconvective diffusivity 
in the Boussinesq approximation are given by (Brand 
and Steinberg [5], Maiellaro and Palese [7]) : 

po[(2) ] +WJwIlql = -Vp+pg-W)q 

(1) 

(aT/at)+q*VT= (K,+NI’K,)V’T+N/1K,V2C 

(2) 

(K/Zt)+q-VC= K,V’T+K,V’C (3) 

v-q=0 (4) 

P = ~8 -aAT- T,) +w(C- Cdl (5) 
with s = f  I according to which density of the solute 
is greater or smaller than the solvent. We can add to 
equations (l)-(5) the following boundary conditions : 

w=d’w/dz2=0 atz=Oandd 

T= T,,, C=Co atz=O 

T= T,, C= C, atz=d. (6) 

Equations (l)-(5) allow the stationary solutions 
given by 
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NOMENCLATURE 

; 
dimensionless wave number, (kf +k:)“’ Greek symbols 
drag co-efficient 6 co-efficient of thermal expansion 

C concentration field a< solute analog of c+ 
d layer thickness P temperature gradient 
F porous parameter, d’/k l- concentration gradient 

9 acceleration due to gravity 0 dimensionless temperature perturbation 

KT thermometric conductivity J. thermoconvection co-efficient 

4 convection co-efficient V kinematic viscosity 
k permeability of a porous medium P density 
k,, k2 wave numbers in horizontal plane frequency, pd2/v 
L‘e Lewis numbers, Pr/Sc iI separation parameter. cc,./+ 
P pressure *2 Dufour parameter, NI’ 
Pr Prandtl number, v/K, w frequency. 

9 velocity components, (u, u, w) 
R thermal Rayleigh number, a,gfid4/vK, 

RI. Lapwood Rayleigh number, R/F Other symbols 
R solute Rayleigh number, ucgl-d4/vK, V2 a*/ax~+a2/ay2+a~/a2 
R cl. K/F v: v'-ayaz=. 
s dimensionless perturbed concentration 
S fl 
SC Schmidt number, v/K, Subscripts 
T temperature field 0 indicates reference values 
X, y, z coordinates d indicates values at z = d 

Y” n27r2+a2. perturbed variables. 

q = 0, T= To--z, C = Co-l-z, (v4KjWlev WIx+k2y)+~~l (14) 

VP = pog[l + w-m-)4 (7) and obtain the following equations : 

where b = (To- T,)/d, r = (Co-- CJ/d. 
Now we shall study the linear stability of stationary 

solution (7) and examine the effect of anisotropic ther- 
moconvective currents on this stability. For the devi- 
ations from the stationary state we find the following 
linearized equations : 

(aq/atj = (I/p,jVp’+g[-cc,T’+sa,C’l-(v/k)q (8) 

(W/&j = (K,+NA2K,)V2T’+NAK,.V’C’+flw (9) 

far/at) = K,V2T’+K,V2C’+l-w (10) 

v*q = 0. (11) 

Eliminating the pressure from (8) it follows that 

(av%/atj = -(v/kjv2w+a,qv:T’-qa,#c’. 

(12) 

From (6) we obtain the following boundary con- 
ditions for the perturbations : 

w=d*w/dz’=T’=C’=O atz=O,d. (13) 

3. LINEAR STABILITY ANALYSIS 

For the perturbation equation (9), (10) and (12) we 
look for solutions of the form : 

(w, T’, ‘3 = t(MMz), (vd/K,)W, 

[(D’-a2)(l+NJ’ PI/SC)-uPr]O 

= -pw-NA(D2-a2)S (15) 

(D’-a’--eSc)S= -Fw-1(Pr/Sc)(D’-a’)0 

(16) 

(a+F)(D2-a2)w = -(a,ga’d6/vK,)B 

+(cr,gsa2d6/vK,)S. (17) 

The boundary conditions (13) become : 

w=D*w=O=S=O atz=O,l. (18) 

Finally, eliminating 0 and S between equations 
(15)-( 17) we obtain a single differential equation for 
the stability problem as : 

(a+F)(D2-a2){(D2-a*-crSc)[(D2-a’) 

~(1+1~NPr/Sc)-aPr]-(D~-u~)N~~Pr/Sc}w 

= Ra*(D’-a*-aSc)w-s&a2[(D2-a*) 

x(l+NL*Pr/Sc)--Pr]w 

+(&z2d6/vK,j(D2-a2)(-NtlJ+s&)w. 
(19) 

For wave-like perturbations, A sin (nnz), w, and 
D2w and all even derivatives becomes zero and from 
(19) we obtain 
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(u+F)y,{(y,,+aSc)[y,(l +i*NLe)+aPr} 

-y,;Nl* Le = Ru*(y,,+aSc) 

-sR,a2[y,(l +I*NLe)+aPr] 

+ la’y,,[ -NR, Le q-/a, + R, s a,/~+] (20) 

with yn = n* ~*+a’ and Le = Pr/Sc. 
In the critical region of neutral stability, the real 

part of u must be zero. Therefore taking u = iw, w 
real, we examine two possibilities, i.e. o = 0 and 
w # 0, according to whether the instability occurs as 
a stationary convection or as an oscillatory mode. For 
w = 0 we obtain from (20) 

RL(l+~sa,/uT)-RCJNLea,/a,+s(l+l*NLe)] 

= y;/a*. (21) 

The minimum value of R, occurs at a, = n for n = 1 
and is given by 

R,(l+Iscr,/a,)-R,,[NLecr,/a,+s(l+1*NLe)] 

= 47l*. (22) 

For a single component fluid we obtain from (22) the 
minimum Rayleigh number 

R, = 47t2 (23) 

given by Lapwood [8] while in the absence of cross- 
diffusion, we obtain the relation 

R, -sRCL = 4n2 (24) 

which was obtained by Rudraiah ef al. [9]. For N = 0, 
i.e. in the absence of the Dufour effect, equation (22), 
gives 

RL(l +Isa,./a,)-sR,, = 47~~. (25) 

If w # 0, we obtain from (20) the following 
relations : 

Ra’(l +Isa,./cr,)- R,a*[NA Lea&, 

+s(l +NA’Le)+w’[y,, Pr+PrScF 

+Sc(l +A2NLe)y,,]-Fy,f = 0 (26) 

Ru*Sc-R,u*sPr+w*PrSc y, 

-[PrF+Sc(l +i’NLe)F+y,,]y,z = 0. (27) 

From these equations it follows that 

X/Y = y,5/u2 (28) 

with 

X= RSc{Sc[PrF+(l+A*NLe)y,,] 

-Is Pr y,,aJq-} + R, Pr2[NAyntcr/aC -s(y,, +ScF)] 

Y= [Pr+Sc(l+1’NLe)]{yS+[Pr(y,,+ScF) 

+Sc(l +l’NLe)y,]F} 

co* = {-Ru*Sc+R,a*SPr 

+[PrF+Sc(l+1’NLe)F+y,]y,~}/PrSc y,,. (29) 

Minimizing (28) with respect to u* can most con- 

veniently be solved numerically. However, equation 
(28) can be simplified considerably if we assume that 
Fis large. This condition can be satisfied for a densely 
packed porous medium in which case the value of F 
is generally greater than 10’ (Joseph [lo]). Then for 
oscillatory instability, equation (28) gives 

[R,Sc-sPrR,,]/[Pr+Sc(l+l’NLe)] =4x2 

(30) 

with a: = rr’. Equations (22) and (30) are evaluated 
numerically and the results are discussed in Section 4. 

From (26) and (27) it follows that 

Ru’(l+isu,/a,)-R,a’[N~Lecc,/a, 

+s(l+N,l’Le)]-Fyj 

= -w*[Pry,+PrScF+Sc(l+I,*NLe)y,] (31) 

Ru’Sc-R,u*sPr-[PrF+Sc(l+NA* Le)F+y,]yj 

= -w’Pr Sc y,,. (32) 

The right hand sides of (31) and (32) are certainly 
negative and this implies the negativity of the left hand 
sides ; therefore, from these equations we have 

KU +~sa,la,) 

-RJNi Lea,/cr,+s(l +l’NLe)] < 47c* (33) 

[RLSc-sR,,Pr]/[Pr+Sc(l+NA’ Le)] < 4~‘. 

(34) 

We observe from (22) and (33) that conditions (33) 
and (34) assure, in any case (w = 0, w # 0), the stab- 
ility. 

If w = 0, in view of (33) and (24) it follows that the 
anisotropic thermo-convective currents with respect 
to the case in which they are absent can have a sta- 
bilizing or destabilizing effect according to whether 

R,lsu,/u,- RcL (sl+cr,/a,)NA Le2 0. (35) 

Thus, in the case of heating from below and salting 
from above with s = 1, the anisotropic effects have a 
stabilizing effect; while in the case of heating from 
above and salting from below the anisotropic effect is 
a destabilizing one. For oscillatory stability (i.e. 
w # 0) we write from (28) 

F(1) = u(l)R+b(A)R, (36) 

where 

u(A) = {Sc2[PrF+2n2(1 +I*NLe)] 

-s2n’,las,/a,-PrSc}/D(A) (37) 

b(l) = Pr’{Za’lNcc,/cr,-s(2K’+ScF)}/D(~) (38) 

with 

D(1) = [Pr+Sc(I +I’NLe)] 

x {2n’+F(Pr(2d+ScF) 

+2n*Sc(l+I’NLe))}. (39) 

Also from equations (34) we write 
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G(1) = c(l)R+d(l)R, (40) 7 r ---- Marginal curve 

- Oscillatory / 

10 

where 
6 

c(l) = Sc/[Pr+ Sc( 1 + Nk2 Le)] (41) 
10-I 

Le = 10-Z 
d(l) = -sPr/[Pr+Sc(l +NA* Le)]. (42) 

We consider the difference 

e2[F@) -F(O)] =I; R+f,R, (43) 

where 2 

e2 = D(I)D(O) (44 
1 I I I I I I 

1 2 3 4 5 6 7 

Log Rc, 

FIG. 2. Stability curves for different values of Le. 

f, = {Sc2[PrF+2n2(l +,I*NLe)] 

-2slu,/u,PrScn2}D(0)-Sc2(2n2+PrF)D(L) 
(45) 

anisotropic currents is stabilizing, while for /I = 0, and 
r < 0, the effect is destabilizing. Furthermore it seems 
worth mentioning that the same type of behaviour 
also occurs for convective instability in a binary 
mixture of two fluids without a porous medium 
(Maiellaro and Palese [7]). 

f2 = Pr2{2kc2D(0)tlr/q 

+s(2n2+ScF)[D(I)-D(O)]}. (46) 

The stabilizing or destabilizing effect of anisotropy 
depends on the sign of the difference F(I) - F(0) to- 
gether with the condition max [G(I), G(O)] < 47~‘. 
Thus from (28), (34) and (43) it follows that the aniso- 
tropic effects have a stabilizing or destabilizing effect 
according to 

4. RESULTS 

The linear stability of a binary mixture of two mis- 
cible fluids in a horizontal porous layer is investigated. 
The linear theory is based on the normal mode analy- 
sis under the assumption that the amplitudes of the 
convection are small. The effect of anisotropic ther- 
mo-convective currents in the presence of Soret and 
Dufour currents on the critical Rayleigh numbers for 
both marginal and overstable motions are deter- 
mined. 

The effect of Prandtl number on the stability is 

f,R+f,R, >< 0 (47) 

and 

max [G(l), G(O)] < 47~~. (48) 

As a particular case, from (45) to (47) it follows 
that, for s = 1, p = 0 and r = 0, the effect of the 

7 r ---- Marginal curve 

- Oscillatory 
Oscillatory 

---- Marginal curve 
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FIG. 3. Stability cwves for different values of ‘i’, 
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FIG. I. Stability curves for different values of Prandtl 

numbers. 
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9 Oscillatory 
,Y2 = 10 

/ 

8 

---- Marginal curve ,’ 
, 1 

0.1 
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Log Rc, 

FIG. 4. Stability curves for different values of ‘I’*. 

shown in Fig. 1. We observe from Fig. 1 that the effect 
of increasing Prandtl number is to stabilize the system. 
Its effect is more pronounced for large values of the 
concentration Rayleigh number. For small values of 
RL and large o the overstable motions are ruled out, 
whereas for small Pr overstable motions are always 
possible. 

The effect of Lewis number (the ratio of diffus- 
ivities) is depicted in Fig. 2. The effect of the ratio of 
diffusivities on the stability is found to be similar to 
that of Prandtl number. 

The effect of separation parameter 1(1, (= Icr,/a,) on 

the stability of the system is shown in Fig. 3. We 
observe from Fig. 3 that the increasing effect of $, is 
to destabilize the system. 

The effect of the parameter J/*( = 1’N) is shown in 
Fig. 4. It is evident from this figure that for the typical 
values considered, the marginal stability occurs as the 
first bifurcation. 
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